100 years of Accumulated Deformation at Depth Observed in the Elizabeth Lake Tunnel, Southern San Andreas Fault

A. Tayyebi¹, J. Telling¹, K. Hudnut², C. Davis³, C. Glennie¹

¹ National Center for Airborne Laser Mapping, University of Houston
² United States Geological Survey
³ Los Angeles Department of Water and Power
Elizabeth Tunnel, CA

- Constructed between 1907 and 1911
 - Transport water from Owens Valley to Los Angeles
 - Elizabeth Tunnel crosses the San Andreas Fault (SAF)
 - 8 km in length, 87 m below Elizabeth Lake Valley
 - Dug simultaneously from both ends
 - N and S sides met within 2.9 cm horizontally and 1.6 cm vertically (1)
 - Finished 450 days ahead of schedule

Photo Credit: LADWP Archives
Map Credit: LCI Report (2015)
Data and Research Questions

- Terrestrial Laser Scanning
 - Collected in 2012
 - Nearly 200 TLS scans
 - Cross section example on right

- Research Questions
 - Has the tunnel shifted since it’s construction?
 - What scale of change can be detected given the variability in the tunnel itself?
 - Can the tunnel – fault intercept be isolated to a narrow region for re-engineering?

Photo Credit: Water and Power Associates, CA
Tunnel – SAF Intercept

- Active strands of the SAF in red
- Inferred SAF strands dashed
- Queried SAF strands uncertain
- Most recent coincident rupture took place in 1857 (2,3), prior to tunnel construction

Map Credit: LCI Report (2015)
Methods – ICP

- The beginning and end of the tunnel are assumed to make a straight line.
- The offset of each tunnel segment, in 5’ intervals, from this straight line was calculated.
- Cross section thickness – 5’
 - Whole tunnel data set is used.
- Iterative Closest Point – Point to Plane
 - Chen and Medioni (1991) (4)
 - Figure from Besl and McKay (1992) (5)

Exaggerated offset for sections along the tunnel.
Methods – Cracking Analysis

- Cracks were visually detected along the tunnel within the TLS data.
- Only cracks in high point density regions were included in the analysis to eliminate false identifications.
- Examples to the right of what cracks look like in the TLS data.
Results

[Graph showing horizontal offset (m) along feet along tunnel with categories: Altered Granite, Crushed Zones, Hard Granite, Unknown]
Slope at the Tunnel – SAF Intercept

- Los Angeles Regional Seismic Experiment (LARSE) I and II experiments bracket the tunnel (6)
 - LARSE I dip ~ 83°
 - LARSE II dip ~ 90°
- Inferred SAF dip at the intercept with the tunnel is 90°
- Using this dip, the intercept between the fault and the tunnel at depth can be projected
Local SAF Segments

- Three known fault tunnel crossings (A, B, and C from North to South) (8)
- The center (B) strand was active in the 1857 earthquake
 - Slip rate ~15-35 mm/yr
 - Eberhart-Phillips et al. (1990) (7)
- Less work on slip rate and fault dip has been completed on the northern and southern strands (A and C)
Projected SAF – Tunnel Intercept

Horizontal Offset (m)

Feet along Tunnel

Tunnel Joining
Fault Crossing

Altered Granite
Crushed Zones
Hard Granite
Unknown
Discussion

- Central offset
 - 14 cm
 - Visible curve in the TLS data
 - 2000’ between tunnel joining and offset feature
 - Increased rate of cracking near offset

- Southern offset
 - 11 cm
 - Visible curve in the TLS data
 - No mapped faults near offset
 - Lack of change in cracking frequency may point to a construction deviation
Conclusions

- Tunnel construction records indicate that the tunnel was fairly straight when constructed since the tunnel joining was only off by ~3 cm horizontally and ~2 cm vertically.

- TLS data throughout the tunnel was analyzed with ICP to determine along tunnel offsets at over 5000 cross sections.

- Two notable offsets were found along the tunnel:
 - Southern offset, unrelated to known faults or major cracking.
 - Central offset, between two known strands of the SAF, surrounded by a notable increase in cracking on the tunnel walls.

- Observed central offset ~14 cm but predicted deformation along the SAF would suggest that there should be ~2 m of deformation (20 mm/yr, 100 yrs) (7).

- Further modeling and analysis will seek to understand why we do not see more deformation.
References

(2) LCI. Elizabeth Tunnel Report. LCI Project 1094.000. 10/27/15.

Questions?
jtelling@uh.edu