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Problem statement:  
During fall 2003 and spring 2004, I and Suju Rajan wrote this paper.  It was declined 
immediates when I submitted it to IEEE TGARS because it did not pertain enough to 
“remote sensing”.  I will have to edit it heavily to make it suitable for submission 
somewhere else.  In it’s current form, it is not state-of-the-art in pattern recognitions so 
it can’t be submitted as a full-length paper to such a journal (too much discussion of 
things that are already well known in that community).  However, there is much good 
text in it, so I don’t wish to lose that.  That is why it is being “saved” as an ASPL report.   
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Abstract – Extremely Low Frequency (ELF) electromagnetic signals are of great 
interest in a variety of applications, including the transmission of communication 
signals over long distances in seawater and below the Earth’s surface, deep geophysical 
sounding, and the study of electrical atmospheric phenomena known as sferics.  In 
subsurface signaling applications, wireless electromagnetic methods generally require 
far less infrastructure than wireline approaches and can provide effective signaling over 
much longer distances than acoustic methods.  However, the ELF band is highly 
susceptible to interfering signals emanating from electronic and electro-mechanical 
equipment that is often associated with geophysical exploration.  This interference can 
significantly degrade the demodulation and subsequent analysis of the received signals.  
To improve the demodulation of ELF communication signals, data can be segmented 
via clustering methods into sequences representing different signal states.  In this work, 
several clustering approaches are compared on their ability to segment ELF signals in 
the presence of severe interference.  K-Means and ‘k-Means like’ clustering methods 
are found to be superior overall.   
 
Keywords – data segmentation, cluster analysis, pattern recognition, subsurface 
propagation, low-frequency interference 

Introduction 

 



 

 

Extremely low frequency (ELF) electromagnetic signals (<3 kHz) are used for deep 
geophysical sounding, underground and undersea signaling, and the study of lightning 
induced electric field perturbations known as sferics [1] [2] [3]. While these long 
wavelength signals have the ability to propagate through the Earth’s subsurface media 
and through seawater, this frequency regime is highly susceptible to interference from a 
wide range of natural and anthropogenic sources [4]. Various approaches have been 
investigated to mitigate the effects of low-frequency interference, such as protective 
shielding or redundant sensors placed at different locations, but quite often the 
interference cannot be satisfactorily removed. In applications where the received 
subsurface signals are analog geophysical measurements, which often exhibit 
significant temporal correlation, data corrupted by short bursts of relatively high-power 
interference can sometimes be removed from the signal with acceptable loss of 
information.  In some cases, the signal source may even be modeled well enough that 
estimated values can be inserted in place of the removed signal segments [5].  In the 
case of digitally modulated signals, however, simply removing signal segments 
corrupted by interference leads to an unacceptable loss of information.   
 
In general, increasing transmitter power or adding redundancy via repeated codes 
(transmitting longer messages) does not solve the problem because many field-deployed 
systems have severe constraints on transmitter power consumption. Furthermore, it is 
not usually possible to fully characterize or even identify all possible sources of 
interference associated with geophysical exploration infrastructure or other equipment 
in the vicinity of geophysical signal receivers. The amplitude, frequencies, and duration 
of the interference sources vary in unpredictable ways, resulting in highly nonstationary 
interfering signals, thus complicating subsequent demodulation and analysis of the 
received data.  Mitigating approaches such as spread spectrum that have been used to 
successfully overcome interference in high-frequency (narrow band) applications are 
not viable for the large bandwidth-to-carrier ratios encountered with ELF 
communications [6].  However, pattern recognition methods can be used to segment the 
received data into different signal states, which in turn can be used as a priori 
information for subsequent signal processing.   In this work, we investigate and 
compare different clustering approaches to determine which methods appear best suited 
for automated interference identification for phase modulated digital signals in the ELF 
regime.  This analysis could also be applied to broadband analog (electromagnetic or 
acoustic) geophysical signals. 
 



 

 

Clustering is the process of finding natural groupings in data [7], where the groupings 
are defined by some similarity measure such as the distance between two samples in 
data record. Much work has been done in the clustering of a broad spectrum of signals. 
Clustering using Kohonen Networks has helped identify crack related interferences in 
Acoustic Emission Signals [8].  Hidden Markov Models (HMMs) while being used for 
speech recognition for years have also found application in the clustering of vector time 
series for monitoring manufacturing machines [9]. Plicker, et al. [10] and Guedalia, et 
al.  [11] used clustering to characterize non-stationary time series data. EEG signals 
have long been subjected to clustering techniques in an effort to automate the process of 
discovering certain biophysical events [12]. [13] is an application of clustering pseudo-
HMMs for indexing video signals.[14] and [15] used neural network based approaches 
for clustering neuron signals and employed simpler methods like template matching that 
use a set of pre-defined signal segments as cluster prototypes. 
 
Much of the research on interference suppression in digital communications to date has 
focused on high-frequency signals where interference can be greatly reduced by 
partitioning the useable bandwidth [16]. In this work, we focus on the automatic 
detection of interfering signals in feature space.  A clustering approach was motivated 
by the poor performance obtained with correlation methods due to the severe in-band 
interference. We evaluated the performance of several well-known clustering algorithms 
on low frequency signals to see if the process of knowledge extraction could be 
automated. The clusters obtained can be used to form a codebook, which can then be 
used to classify incoming signal segments as ones containing ambient noise, signal with 
noise, signal with noise and interference, etc.  Since the results of the different 
clustering algorithms are to be used only as a look-up table, this work focuses only on 
those clustering algorithms that differ in their inherent bias and assumptions about the 
data. Speed and scalability are of secondary importance and are not studied in this work. 
The ultimate goal being the identification of the clustering algorithm that can best 
discover inherent structure in real-world ELF data that is subjected to interference. We 
focus on the well known methods of K-Means, Agglomerative Clustering, Self 
Organizing Maps, Graph Partitioning, and Cluster Ensembles. Cluster validity indices 
like the Dunn indices, Davies-Bouldin index and the average Silhouette Width are used 
to determine the “best” algorithm. While these measures are not guaranteed to 
determine the overall optimal clustering method, a consensus about which algorithms 
are best suited to the present application is arrived at by comparing the performance of 
the different methods using these indices.  



 

 

 
Section 2 describes a typical received data record obtained by transmitting a phase-
modulated signal through the ground. Section 3 deals with the issue of preprocessing of 
data and identification of a suitable set of features. Sections 4 and 5 explain the different 
clustering algorithms that are studied and various cluster validation indices that are used 
to evaluate the performance of each algorithm. Results and conclusions are presented in 
sections 6 and 7.  

Data Description 

 
The communication signals used in our experiments propagated through several 
hundred meters of subsurface material.  The data were acquired in a region of North-
central Texas that consists primarily of Cretaceous age marine and near shore deposits 
[17].  Manual analysis of a subset of the test data was performed to identify signal 
segments that contain useful information (transmitted signal). This group of useful 
signal segments can be split into two main categories: signals that are transmitted from 
the surface down into the subsurface, called the downlinks, and the signals that are sent 
to the surface from a transmitter deep within the Earth’s surface, called the uplinks.  The 
uplinks are more susceptible to interference because of their low relative power. The 
surface receiver also recorded broadband noise due to the electromagnetic background 
environment, periodic noise induced by mechanical rotation of metal parts, and 
impulsive noise due to the intermittent mechanical or electrical events.  Some of the 
interference signals are capable of causing saturation of the signal receiving hardware 
resulting in a partial or complete loss of the carrier signal. An example of a test data 
record is shown in Figure 1, while normalized views of various signal segments of 
interest are shown in Figure 2. 
 
 



 

 

 
Sample Number (×105) 

Figure 1:  Typical recorded ELF signal (relative to the maximum received amplitude) 
showing manually identified uplinks (x) and downlinks (*). 

 
The examples in Figure 2 represent the baseline cases of the respective signal segments. 
In practice the uplink signal segment might be highly corrupted by interference. Since 
the classification needs to accommodate non-stationary signals, clustering algorithms 
were used to partition long data records into short segments corresponding to the 
uplinks, downlinks, corrupted uplinks, and ambient noise.   
 



 

 

 
Figure 2: The different signal segments of interest (normalized to unity amplitude).  

 

Feature Space Selection  

 
The success of any clustering algorithm depends to a large extent on the feature space 
used. Preliminary analysis of the available uplinks and downlinks helped identify a 
feature space based on the Short Time Fourier Transform (STFT) which proved to be 
the most efficient among all the feature spaces considered for this specific problem. 
 
The time-frequency localization ability of the Short Time Fourier Transform (STFT) 
[18] enables STFT-based features to capture the nonstationary frequency information 
inherent in the signals as a vector. Each signal segment was encoded as a vector of 
discrete frequency indices by using a 256-point STFT on a Hamming-windowed 
segment of length 512 and an overlap of 64. Each such STFT transformation yields a 
matrix of the estimate of the short-term (time-localized) frequency content of the signal. 
The columns represent the increase in time while the rows of the matrix correspond to 



 

 

increasing frequencies. It was found that the discrete frequency index at which each 
signal segment achieved its maximum served as a good discriminator for the different 
signal types of interest. As can be seen in Figure 3 the uplinks achieved their maximum 
amplitude at the same frequency across all time localizations. Uplinks corrupted by the 
noise showed some variation about the uplink frequency (about 10%), while noise 
signal segments exhibited much larger variation. The segments corresponding to 
downlinks map into a totally different frequency range over the different time 
localizations.  The variance of these indices and the mean amplitude of the signal in 
each of the segments were also identified as good attributes for encoding the signal 
segments. Most of the parameters for the STFT computation were determined 
empirically by applying the transformation to signal segments about which we had prior 
class information in order to obtain a discriminative feature space. 
 

 
Figure 3:  STFT representation of the four different nominal signal segments of interest.   

 



 

 

Clustering Methods 

 
No single clustering algorithm will perform uniformly well on all datasets [19] [20] 
[21]. The huge variety of methods available for representing the data, computing 
similarity/distance measures and for the aggregation of the data points has resulted in a 
plethora of clustering algorithms. As mentioned in [19] each of these different methods 
will produce clusters when presented with data, even if the data itself has no inherent 
structure. All such clusters produced by these different methods are equally valid as 
long as the clusters do not occur by chance or by some quirk of the clustering algorithm 
itself. More often than not, the choice of a particular algorithm and its corresponding 
parameters is a matter of trial and error in which the practitioner experiments with the 
available design choices until clusters that meet certain preset criteria are obtained. 
 
While it is impossible to experiment with all the available clustering algorithms and 
their respective parameter spaces, choosing a few methods that differ significantly from 
each other in their inherent bias and assumptions about the data can help to focus  
attention on those algorithms that are similar to the most “successful” one thereby 
narrowing down the search space considerably. This being the ultimate goal of our work 
we chose for comparison the following clustering algorithms (1) k-Means (2) 
Hierarchical Agglomerative Clustering (3) Self Organizing Maps (4) Graph Partitioning 
and (5) Cluster Ensembles. A short description of each algorithm follows. 
 
Let { }xxX N,...,1=  represent the set of data points. A partitioning (clustering) of these 
N  objects into k  clusters results in sets of objects denoted by C m , ( )km ,,1…∈  or a 

label vector λ  in 1×ℜN . A super-script on the data point denotes the cluster membership 
while a subscript refers to a specific data sample. In all cases, the distance measure used 
between any pair of data points or their variants (such as the mean) is the Euclidean 
distance denoted by ( ).,.d . 
 
4.1 k-Means: 
 
One of the simplest and most popular clustering techniques, the k-Means algorithm [22] 
belongs to a class of algorithms called the partitional methods in which a single 
partition (clustering) of the data X  into k  clusters is obtained by optimizing a local or 



 

 

global cost function. The sum of squares criterion, which is widely used, has the 
following cost function [23]: 
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where x  denotes the centroid of each cluster. The k-Means algorithm works by 
choosing k  random points as the cluster centers and assigning each ix  to the cluster 

center that is closest to it based on the similarity measure ),( xxd i . The new cluster 

means are then computed and the data points are reassigned until the criterion function 
converges. It has been shown [19] [20] [24] that the algorithm works well when the 
clusters are compact and well separated. Besides having to specify the number of 
clusters, the algorithm has been known to converge to a local optimum that is very far 
from the global one. Sensitivity to outliers and to the initial choice of cluster centers are 
some of the other drawbacks. 
 
4.2 Hierarchical Agglomerative Clustering: 
 
As the name implies this method belongs to a group of hierarchical clustering 
algorithms which yield a dendrogram or a tree-like structure in which the leaves 
represent the data objects X  and the nodes represent subsets of X . In the 
agglomerative method each data point is considered to be its own cluster and pairs of 
clusters are then successively merged until all objects belong to one cluster. The various 
agglomerative algorithms differ in the way the subsets of X  are merged, i.e. in the way 
the cost function of merging two sets of objects is defined. Most algorithms use single-
link, complete-link or average-link metrics or their variants. In our study we use the 
average link cost function, which is defined as follows: 
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It has been shown [25] that single-link metrics produce straggly, chain-like clusters, 
complete-link metrics produce spherical clusters and average-link metrics, which 
attempt to minimize the maximum variance, produces clusters that are between the two. 
These methods are computationally expensive as the linkage metrics are computed over 



 

 

a proximity matrix of order NN × . Unlike the partitional methods where the data 
points can be relocated, the hierarchical methods do not revisit clusters that are already 
formed, which might result in sub-optimal clusterings as a best merge at one stage need 
not be so in the later stages. A number of variants, which integrate hierarchical 
clustering methods with other techniques, have been shown to alleviate these drawbacks 
to a certain extent [24]. 
 
4.3 Self Organizing Maps: 
 
Self Organizing Maps (SOMs) [26] are a class of artificial neural networks that are 
based on the idea of competitive learning. The SOMs normally consist of a set of source 
nodes that map into a one or two-dimensional lattice of output neurons that learn by 
competing with one another to selectively respond to certain classes of input patterns 
resulting in a topographic map. The spatial location of these output neurons in the 
topography corresponds to features of the input data. The neurons learn by adjusting 
their weight vectors so as to minimize the Euclidean distance between the input vectors 
xi and the weight vectors wm .  The update rule for the weight vectors is given by [27] 

                                   ( ) ( ) ( ) )]()[(1 )(, nwxnhnnwnw mxmimm −+=+ η                           

(3) 
where η  and h  are the user-defined learning rate and neighborhood functions 
respectively. The variable n  represents the iteration over time. The output map is an 
approximation of the input space and is ordered by the features in the input data. The 
output map also reflects the distribution of the input data as larger domains of the output 
space correspond to those vectors that have a high probability of occurrence. The final 
partitioning produced by the SOMs depends on the choice of the initial weights and 
potentially other user-specified parameters. Like the k-Means methods, SOMs favor 
spherical clusters. 
 
4.4 Graph Partitioning: 
 
The problem of clustering has been related to the problem of graph partitioning in 
which the goal is to partition a vertex-weighted graph G  into k  unconnected 
components of approximately equal sizes. In a clustering framework each of the data 
points are considered as the vertices of the graph, and any two vertices are connected 
together by an undirected edge weighted by the similarity (inverse of the distance) 



 

 

between those two data-points. The idea is to split the graph G  by a set of edges 

ξ , ( )ji xx ,  pairs, such that we obtain k -unconnected components. The set of edges ξ  

are chosen so as to satisfy the objective function 
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It is also assumed that the normalized vertex weights satisfy a balancing constraint, 
which ensures an equal number of data points in each cluster. Finding an optimal edge 
separator is a NP -hard problem [28]. However several approximation algorithms and 
heuristics are available such as METIS [29] and Spectral Bisection [30]. In our study we 
use METIS, which handles the constrained optimization problem in three phases which 
involve (i) coarsening, (ii) initial partitioning, and (iii) refinement. The graph 
partitioning algorithms are better suited to data of large dimensions. The balancing 
constraint presupposes an equal distribution of data points across all clusters which may 
not always be the case. 
 
4.5 Cluster Ensembles: 
 
Cluster Ensembles is the method of combining the outputs of different clustering 
algorithms in order to improve the quality and robustness of the resulting clusters. In 
this method, a set of labels λ ),...1( r from the different clustering algorithms are 
combined to form a single consensus labeling, where λ i  is the label vector produced by 
a particular algorithm [31]. As long as each of the individual algorithms have different 
biases and generalize in distinct ways we can say that the cluster ensemble will perform 
as good as or better than the individual clustering algorithms, when each algorithm is 
provided with a subset of features or a subset of the data. However there is no guarantee 
for the better performance of the ensemble technique when the individual algorithms 
have an unrestricted access to the data. Cluster ensemble methods are more relevant in 
knowledge reuse [32] and distributed computing frameworks than in our present 
application, but for completeness we evaluate the performance of the “average 
clustering” in comparison with that of the individual methods. 
 

5 Cluster Validation 
 



 

 

As mentioned previously, any clustering algorithm when presented with data will 
produce clusters regardless of whether or not the data have any inherent structure. The 
partitioning of the data thus depends on the inherent characteristics of the data and the 
clustering algorithm as well as the parameters of the clustering algorithm, such as the 
number of clusters in the case of the k-Means algorithm. Improper choices of these 
parameter values will result in a partitioning that is not optimal. Hence some measure of 
the performance of the algorithms for different choices of parameters is necessary. Such 
measures, called cluster validity indices, help to determine the presence of structure in 
the data, the number of clusters, and their validity [33].   
 
The validity indices maybe grouped into three broad categories [34] 

1. Indices based on external criteria that make use of some external information 
that is not available to the clustering algorithm such as the category labels of the 
data. 

2. Indices based on internal criteria which evaluate the clustering result of an 
algorithm by making use of the quantities and features that are inherent to the 
dataset. 

3. Relative criteria which choose a clustering scheme among different schemes 
based on relative merit, which is measured according to some pre-specified 
criterion. 

 
All these indices attempt to measure the quality of the cluster output based on the 
compactness and the separability of the resulting clusters. 
 
In our framework, since we do not have access to any external category labels and the 
intent is to compare the performance of the different clustering algorithms, we use the 
relative criteria as a measure of cluster validity. While most validity indices are used to 
obtain an optimal number of clusters, in this work these indices serve the purpose of 
identifying the algorithm that performs best over a range of cluster numbers. To this end 
we consider three measures of cluster validity, the Dunn Index, the Davies-Bouldin 
index and Silhouette Width. 
 
5.1 Dunn Index: 
  



 

 

The Dunn index proposed in [35] is a measure that attempts to identify compact and 

well-separated clusters based on the distance between two clusters Ci and C j and the 

diameter of each cluster Ci . 

( ) { }),(min, yxdCCDist ji =  where Cx i∈  and Cy j∈  

                                         ( ) ( ){ }yxdCDiam i ,max=  where Cyx i∈,   
 Here, ),( yxd  can be any distance measure.  In our formulation d  is the Euclidean 
distance. 
 
 The Dunn Index can then be defined as  
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For compact and well-separated clusters the distance between clusters based on the data 
points in the cluster has to be large while the diameter of each cluster should be small. 
Given that good clustering algorithms attempt to maximize the inter-cluster distance and 
minimize the intra-cluster scatter, large values of the Dunn-index correspond to good 
clusters.  However the Dunn index is extremely sensitive to the presence of outliers in 
the clusters as it is based on the individual data points in each cluster. Hence it has been 
argued in [36] that more generalized indices based on the Dunn index will yield better 
information about the cluster quality. These measures however do not perform well for 
chain or shell-type clusters. 
 
5.2 Davies-Bouldin Index: 
 
The Davies-Bouldin index [37], unlike the Dunn index, measures cluster quality based 
on both the data-points in each cluster as well as their means. However like the Dunn 
index the cluster quality is measured as a ratio of the inter-cluster distance and the intra-
cluster scatter, which are defined below. 
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where iv  is the cluster mean and 1>q . Then  
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The Davies-Bouldin index is given by                        
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Unlike the Dunn index, a lower value of the Davies-Bouldin index indicates good 
clustering as we would like to minimize the within-cluster scatter and maximize the 
between-cluster separation.  
 
5.3 Silhouette Width: 
 
The Silhouette Width [38] measure evaluates the silhouette width for each and every 
data sample. The algorithm that produces the lowest overall average silhouette width for 
the entire dataset obtained by averaging over each cluster is regarded as the best 
clustering. 
 
The Silhouette width is given by  
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where ( )xa i  is the average dissimilarity of the ith object to all other objects in the same 
cluster and ( )xb i  is the minimum of the average dissimilarity of the ith object to all 
objects in other clusters (in the closest cluster).    

The silhouette width ranges from -1 to +1. A value of +1 indicates a very good 
clustering, that is the data point has been assigned to the best possible cluster. A 



 

 

silhouette width of 0 means that the data point could have been assigned to either of two 
clusters, while a value of -1 indicates a bad clustering. The largest overall average 
silhouette width indicates a good clustering. 

 

6 Experimental Results 
 
Recorded ELF signals transmitted through the subsurface were used in our experiments. 
Clustering was performed on a few datasets, and the cluster centroids of the “best” 
algorithm were used to compute a lookup table which was then used to classify the 
segments of test files to check if the clustering algorithms yielded valid clusters.  As 
stated in [19], though the use of cluster centroids to represent clusters is a popular 
scheme, it works well only when the clusters are compact and well separated. We do not 
analyze the different methods of cluster representation in this work, though other 
methods such as the use of boundary points could have been used. Feature Extraction as 
detailed in Section 3 was performed on the datasets, and the transformed datasets were 
then normalized before being subjected to the different clustering algorithms. 
 
Since the k-means and the SOM clustering algorithms are known to be sensitive to the 
initial choice of cluster centroids and the weights of the neural network respectively, 
both these methods were run multiple times and the clustering with the lowest mean 
square error was chosen in both cases. The cluster ensemble algorithm was 
implemented using the toolbox provided in [31] which makes use of three different 
consensus functions and evaluates all three approaches against an objective function 
based on the Average Normalized Mutual Information to pick the best solution. To 
establish a baseline performance, a random clustering of the data points was also done 
in which each input sample was assigned a cluster label drawn from a uniform 
distribution of labels from 1 to k . 
 
The number of clusters was varied from five through twenty and the validity measures 
for the different clustering algorithms across varying cluster numbers was computed.  It 
has to be kept in mind that higher values of Dunn indices and Silhouette widths and 
lower values of Davies-Bouldin Indices correspond to good clusterings. Figure 4 shows 
the variations of the different indices with respect to the number of clusters. It can be 
seen that k-Means performs the best across all three measures followed by SOMs, 
Agglomerative Clustering, Ensemble clustering, and then Graph Partitioning. There 



 

 

seems to be no strong consensus for the ideal number of clusters across all the three 
indices with Dunn index showing five as the optimum number while Silhouette Width 
chooses fifteen. There seems to be no marked variation in the Davies-Bouldin index 
across the different cluster numbers as far as the best performing k-Means and SOM 
algorithms are concerned.  
 
While these indices reveal how compact and separable the clusters are, it is also 
important that the clusters map into human-interpretable and useful partitions. Figure 5a 
is an instance of one of the few files in which the different signal segments have been 
identified manually while Figure 5b shows the cluster memberships superimposed on 
the signal file for the case of SOM clustering. It can be seen that Cluster 5 clearly maps 
into the downlinks while Cluster 4 maps into the uplinks. Clusters 1, 2 and 3 correspond 
to the noisy signal segments. At higher values of cluster numbers the uplinks and 
downlinks get further divided into yet smaller clusters. The level of granularity required 
depends on the human user. The different noise clusters can then be studied and 
whenever a similar signal segment is observed we can choose one of the predetermined 
filters to extract whatever information that segment may contain or choose to ignore that 
particular signal segment.  
 
We then measured the performance of the look-up table computed from the cluster 
centroids on independent test data, and as can be seen from Figure 6a and 6b the 
uplinks, downlinks and noise segments have been identified correctly-which proves the 
utility of the clustering algorithms in identifying the signal segments of interest thereby 
saving much human effort. 
 
We did not study the performance of these algorithms with respect to the computational 
speed and memory required. SOMs are computationally expensive depending on the 
rate of convergence of the learning process. Since our objective was to construct a look-
up table that could be used offline to classify signals, questions about the relative speed 
and complexity of the different methods were not addressed.  
 
 
 



 

 

 

Figure 4: Performance of the clustering algorithms with respect to the validity 
indices 
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Samples (×105) 

Figure 5a & 5b: Results of clustering using SOMs 
 

 

Sample (×105) 

 
Sample (×105) 

Figure 6a & 6b:  Results of pattern matching using the lookup table 
 

Conclusions 

 
We evaluated the performance of five different algorithms for the purpose of being able 
to identify those signal segments that contain useful information in the presence of 
severe interference at Extremely Low Frequencies. A feature space defined in terms of 



 

 

the Short Time Fourier Transform was found to be the best suited. The clusters obtained 
were evaluated in terms of several cluster validity indices. From our studies it was 
found that the k-Means and SOMs performed best at being able to identify good clusters 
in terms of the validity indices.  
 
While Graph Partitioning suffers from the drawbacks of the balancing constraint, we 
chose to investigate this method because one generally does not have a priori 
information about the sizes of different clusters, unlike the case presented here. So 
while Graph Partitioning proved to be inappropriate for this dataset it might yield good 
results in those cases where there are roughly equal sized clusters. The Cluster 
Ensemble techniques did not perform best, as was expected since we are working with 
the entire feature space [31], but it may be of interest to note that it does much better 
than the worst method.  
 
Even in the nominal case (see Figure 3), signal segments corresponding to uplinks, 
noise and corrupted uplinks can show some overlap. In Agglomerative Clustering, since 
merges are done based on the individual signal segments, it is possible that the above 
types of segments were merged early on resulting in a huge cluster of these signal 
segments. Unlike k-Means and SOMs, these clusters once formed are not revisited. 
Figure 7 implies that our intuition about this method is correct. A similar result was 
reported in [39] when clustering was performed on text documents.  
 
K-Means and SOMs are similar as they both work with the entire dataset instead of 
individual data samples and since they are free from any assumptions about the relative 
sizes of the clusters. Unlike the hierarchical and graph partitioning methods, clusters are 
revisited and the data samples are relocated until the best partitioning is obtained. As 
stated in [39] this approach of relocation of the data samples to better clusters is reliable 
when there is significant overlap between the different clusters. It has to be also borne in 
mind that these two methods were run several times and the best clustering was chosen, 
a single-run of the same could, in general, yield clusters similar to that of 
Agglomerative clustering. 
 
The intent of this work was not to formally establish the optimal algorithm for our 
particular application as the search space for the solution is very large. Instead we 
identified which algorithms did well and which did not.  It is hoped that this study will 
serve as a guide to subsequent analysis of non-stationary ELF communication signals.  



 

 

 

 
Figure 7: Clustering using the Hierarchical Agglomerative Method 
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