

W. E. Carter, R. L. Shrestha, and K.C. Slatton Department of Civil and Coastal Engineering,

University of Florida, Gainesville, FL 32611, USA

SPIE Symposium Waikiki, Hawaii November 8 – 12, 2004



# Photo Counting Airborne Laser Swath Mapping (PC-ALSM)

**Historical Review of LASER Ranging.** 

**Single Photo-electron Lunar Laser Ranging (LLR).** 

Traditional High Signal-to-Noise Airborne Laser Swath Mapping (ALSM)

**Photon Counting Airborne Laser Swath Mapping (PC- ALSM)** 

**Coastal Area Tactical-mapping System (CATS)** 





## Gordon Gould Notes: Nov.13, 1957

**7** Coined the acronym LASER.

**7** Set out the essential elements of a LASER

Suggested applications, including range measurements.





- July 21, 1969, Apollo 11 astronaut Edwin Aldrin place retro-reflector package on lunar surface.
- First LURE observatories used Ruby Lasers, and large aperture (> meter) telescopes.
- Return signals were typically one photoelectron event per several shots.



## Lunar Laser Ranging - Continued

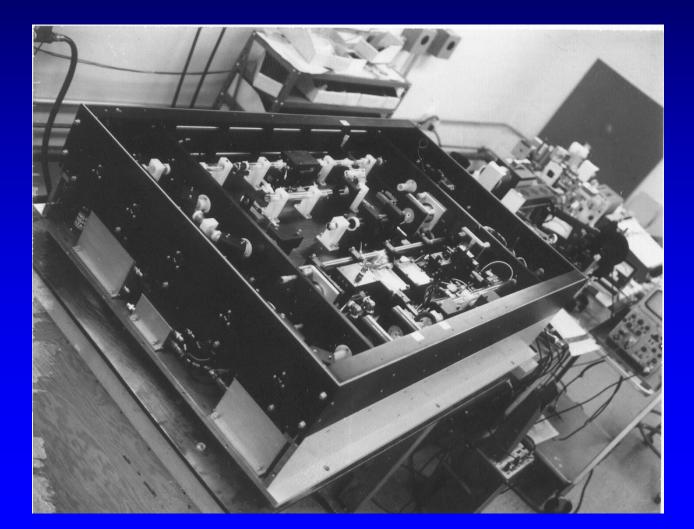
Single photo-electron range measurement uncertainty limited by pulse length (typically 3 to 10 nanoseconds – 1 to 3 meters).

Uncertainty reduced by combining multiple range measurements into "normal points."





→ NdYAG Laser.


**↗ Flash lamp pumped.**

Sub-nanosecond pulse length.

**7** Still large, with high energy consumption.









## "Traditional" Sensors

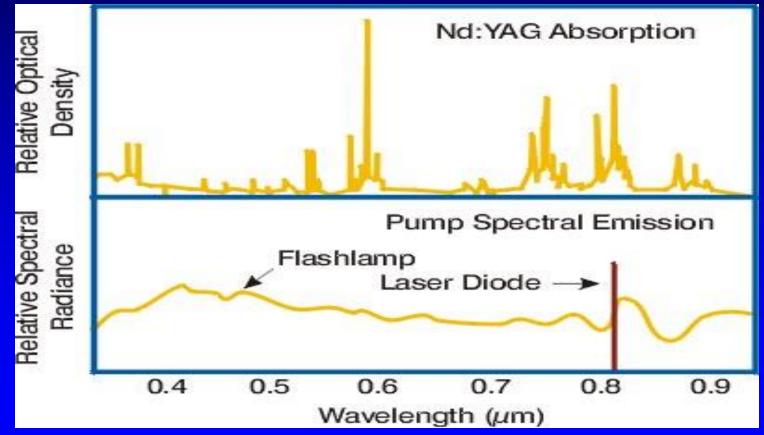
### Avalanche photodiode (APD).

### Traditional Photomultiplier tube (PMT).








Diode pumped NdYAG lasers.

> Optical Inertial Measurement Unit (IMU)

Fast Large Capacity







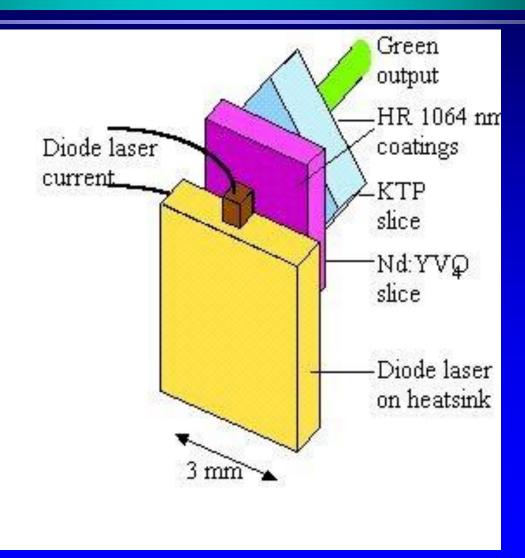
# Limitations of Traditional ALSM Units

- Requires millions of shots per second to get contiguous coverage of terrain.
- Obtaining high signal-to-noise requires pulses nominally 10 nanoseconds in length to obtain strong returns.
- Pulse length limits shortest spacing between returns, resulting in 2.5 dimension point cloud.





## **Enabling Technologies for (PC-ALSM)**


↗ MicroChip lasers.

### Multi-channel photomultiplier tubes.

#### Multi-channel Multi-stop event timer.



## MicroChip laser structure





## **Typical Micro-laser Specifications**

**Repetition rate:** 

**Pulse length:** 

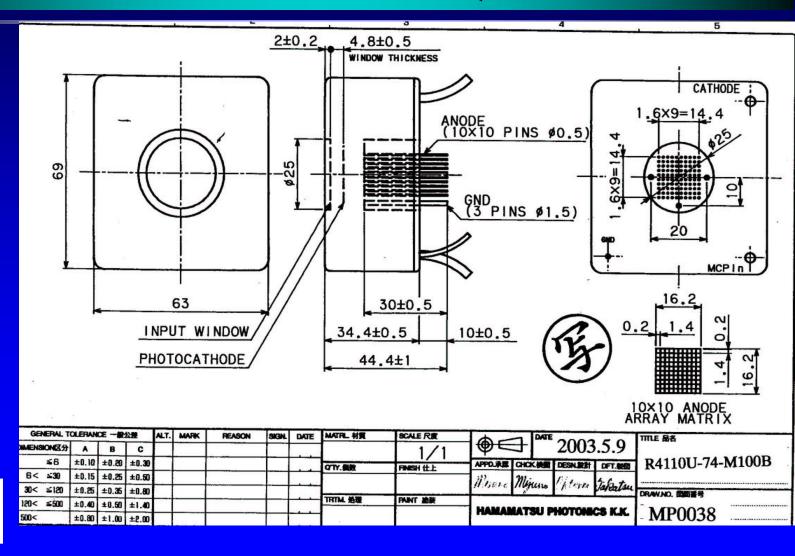
**Energy per pulse:** 

**Beam divergence:** 

5,000 to 10,000 pps

sub-nanosecond FWHM

3 to 5 micro joules at 0.532 micrometers wavelength


1 to 2 milliradians



# MicroChip Laser - CATS



### Hamamatsu Microchannel Plate (MCP-PMT





- Millions of micro glass tubes fused in parallel.
- Each micro tube acts as independent electron multiplier.
- Fast response time (few hundred picoseconds)



## Hamamatsu Multianode Metal Package (MC-PMT)





- Modular design with n channels per board.
- Many events per channel.
- Short (less than one nanosecond) dead time





Pixellated photocathode.

#### **7** Micro-channel-plate amplification.

↗ Anode array.





- Detect, identify, and precisely locate mines and obstructions in landing zones (shallow water and beach areas).
- ↗ Operate from Unmanned Aerial Vehicle (UAV).
- Cost low enough to be considered "expendable."



# Coastal Area Tactical-mapping System (CATS)

Illuminate large enough patches of terrain to get contiguous coverage in single pass.

Use multi-channel PMT to obtain 30 cm or better horizontal resolution.

Produce more nearly true 3.0 dimensional point cloud.





**对** Small as possible (30 cm cube x 2?)

**↗ Lightweight as possible (20 Kg?)**

>> Low power consumption (< 100 Watts?)</pre>





**> Operate from 600 to 1000 meter AGL.** 

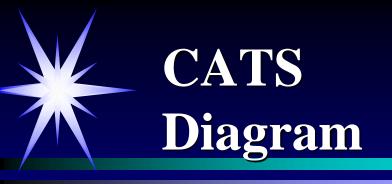
Operate in inclement weather (light fog?)

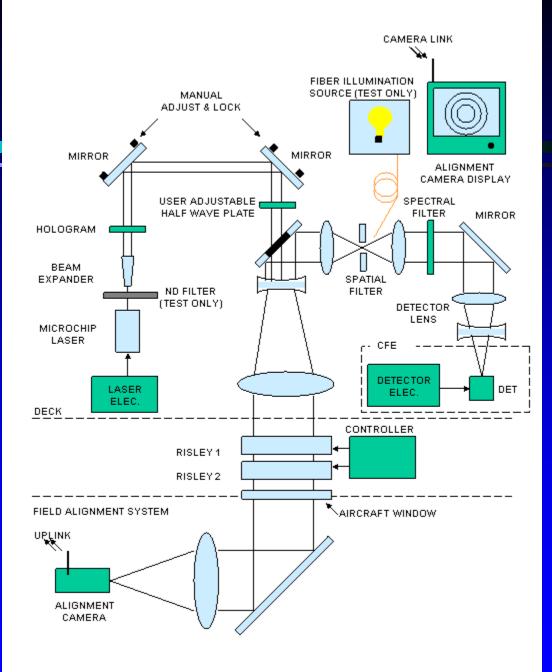
Penetrate shallow water (surf zone to 5m?)





### NdYAG Laser


### Infrared (1.064 micrometer)


Frequency Doubling yields Green (0.532 micrometer) light.

# Does not penetrate water.

Penetrates water.









## CATS Preliminary Performance Specifications

- 7,000 pps x 96 pix = 672,000 pix/s with just one event per channel.
- 95% probability of at least one return in each channel.
- Horizontal spatial resolution: 20 to 30 cm.
  Range resolution: 7.5 cm.



### **Status of CATS in November 2004**

- Multi-channel Multi-event Timer under construction at Fibertek Inc.
- Detailed design of Optical-Mechanical Components of Sensor Head in Progress at Sigma Space Inc.
- IVF Staff and Graduate Students Developing Data Reduction and Analysis Tools.

