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ABSTRACT 
 
Recent advances in Light Detection And Ranging (LiDAR) enable digital acquisition and storage of the entire 
waveform of backscattered laser pulse energy.  Pre-requisites for extracting target radiometric and geometric 
properties via waveform analysis include defining a model for accurately determining peaks in the return energy 
waveform and a method for transforming waveform peak amplitudes to absolute reflectance values.  The 
development of a system response waveform model and reflectance calibration curves for a terrestrial LiDAR sensor 
is described and the results compared to expected values.  Our analysis shows that overall system response varies 
considerably over the dynamic range of the instrument, requiring the development of an empirical template to 
properly estimate the expected system response at a given input signal amplitude.  Finally, it is shown that the 
relationship between target absolute reflectance and raw waveform peak amplitude varies considerably with range to 
target, requiring a distance dependent model for conversion of raw amplitudes to absolute reflectance values. 
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INTRODUCTION 
 

Airborne and ground-based Light Detection And Ranging (LiDAR) systems have become a standard 
mechanism for acquiring dense high-precision topography and three dimensional models. Traditional LiDAR 
sensors provide a series of discrete returns, which represent peaks in the backscattered illumination.  The sensors 
also typically report the magnitude (intensity) of these returns, normally based on an arbitrary scaling that is 
dependent upon the output pulse power and the instrument hardware.  Recent technological advancements, however, 
allow the recording of the entire echo waveform of the backscattered illumination at high sampling rates (500 MHz-
2 GHz). This technology, termed Full Waveform LiDAR (FWL), provides a new ability to enhance pulse peak 
detection through post processing and further quantify additional information about the imaged scene by parametric 
and volumetric analysis of the sampled backscattered illumination.  

To date, waveform analysis techniques have primarily been limited to the detection of return amplitude peaks 
for 3D coordinate definition (Mallet & Bretar, 2009; Wagner et al., 2006; Parrish, 2007; Chauve et al., 2007; 
Roncat, Bergauer, & Pfeifer, 2011; Mallet et al., 2009), with more recent use of return pulse widths for vegetation 
filtering for digital terrain model creation (Wagner et al., 2008a; Mucke, Briese, & Hollaus, 2010).  The methods 
investigated have mainly focused on fitting parametric models to the returned waveform to reliably extract object 
range estimates, and to increase the number and speed at which peaks are detected.  These methods are especially 
applicable in cluttered reflector environments where the laser response from multiple overlapping surfaces results in 
complex return waveforms and individual peaks can be difficult to discriminate.  A large body of literature exists 
detailing the process of fitting waveforms with a given parametric model, and a summary of different modeling 
approaches to the raw waveform signals can be found in (Mallet et al., 2009).  In general, it has been concluded that 
the use of Gaussian or generalized Gaussian models is an acceptable method for peak detection and estimation.  
However, it is difficult to conclude this with certainty, because, to date, the majority of the FWL research conducted 
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has relied upon airborne sensors and measurements. In these cases, the pulse detection methods can be heuristically 
checked against the digitized waveform, but leave no opportunity to control the imaged scene within the laser pulse 
cone of diffraction to ensure that the pulse detection methodology is accurately modeling the backscattered radiation 
and extracting the correct peaks at the proper locations.  Gaussian pulse modeling may therefore not be appropriate 
for all laser scanners, especially for FWL sensors whose overall system response does not show the same Gaussian 
behavior and stability that the current expensive airborne FWL scanners exhibit.  In addition, as discussed in 
(Pfennigbauer & Ullrich, 2010; Ullrich & Pfennigbauer, 2011), Gaussian modeling is not appropriate over the entire 
dynamic range of current systems, especially for high amplitude signals.  In these cases, alternative methodology for 
modeling the system response to more accurately extract target information is required.   
 As stated above, most modern laser scanning systems give an intensity value, which is a unitless measurement 
of the relative peak signal strength of the return pulse.  The scale and resolution of intensity values varies between 
sensor manufacturers.  The expected backscattered signal strength can be estimated for a laser system using a form 
of the LiDAR link equation that accounts for the major elements of the LiDAR system (Cossio et al., 2010).  If we 
assume a collimated beam and diffusely reflecting surface, the amount of photoelectron energy at the LiDAR 
detector can be given as:  
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where ηq is the detector quantum efficiency, ηr is the receiver optical efficiency, Et is the transmitted energy of the 
pulse in joules, h is Planck’s constant, υ is the laser frequency in Hz, ρλ is the wavelength dependent surface 
reflectance, α is the angle of incidence on the surface, Ar is the collection area of the receiver aperture, βε,λ is the 
atmospheric extinction coefficient, and R is the range to the target surface.  For a given LiDAR system, 
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and therefore the  return energy is given by  
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This implies that for a given LiDAR system the variation in return signal strength is directly influenced by 
atmospheric effects, range to target, surface reflectance, and target incidence angle of the incoming radiation.  
Obviously, the influence of range can easily be removed, and if we assume that the atmosphere is stable over the 
time period of a survey, the return waveform amplitude should potentially be able to give us information regarding 
incidence angle and the reflective properties of the target.   
 This paper describes the development of empirical system response waveform templates spanning the dynamic 
range of a terrestrial laser scanner for which Gaussian fitting was found to be inappropriate.   The templates were 
derived from controlled FWL measurements to calibrated targets of known reflectance, thereby providing the ability 
to transform subsequent observed peak waveform amplitudes to absolute imaged target reflectance values, i.e., 
radiometric calibration.  Knowledge of the target geometry used for creating the system response templates also 
provides a basis for future analysis of waveform deviation from the template model for correlation to target 
properties.  The waveform templates should also allow for more accurate range estimation by utilizing the observed 
system response in full waveform decomposition algorithms. 
 
 

DATASET DESCRIPTION 
 

VZ-400 and Reflectance Standards Description 
For the purposes of this study, the University of Houston has acquired a VZ-400 tripod laser scanner 

manufactured by Riegl of Horn, Austria.  Specifications for the VZ-400 are given in Table 1.  The VZ-400 scanner 
utilized in this study has been upgraded with a firmware modification by the manufacturer that allows for full 
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waveform recording of the backscattered 
laser energy.  The return energy is digitized 
at a 500 MHz rate, or a sample every 2 
nanoseconds.  A typical return waveform 
measured with the VZ-400 from a flat 
surface with a zero incidence angle is given 
in Figure 1. 

An examination of the waveform profile 
in Figure 1 introduces two significant issues 
for modeling the waveform response of the 
VZ-400 laser scanner. First, due to both the 
narrow outgoing pulse width (FWHM of 
approx. 5-7 ns), and the low digitization rate 

(2 ns samples), there are very few points captured on the return pulse – perhaps only 5 or 6.  This makes it difficult 
to accurately and reliably fit a model to the return pulse shape.  Second, the return pulse clearly does not have a 
Gaussian distribution, as there is a significant tail in the return pulse.  This indicates that Gaussian modeling will 
likely not lead to accurate and reliable estimates for the target properties encapsulated in the return waveforms.  The 
manufacturer of this laser uses a process they call online waveform processing with the VZ-400 in order to estimate 
return locations in real-time.  For this processing, rather than fitting Gaussian models, they have stored a series of 
templates of the system response at intervals across the instrument dynamic range. See (Pfennigbauer & Ullrich, 
2010) for a discussion of the manufacturer’s implementation. 

The full waveform mode of the VZ-400 only provides the user with information about the backscattered laser 
energy.  Very little information about the internal properties of the laser scanner or pulse is recorded (for example, 
the shape of the outgoing pulse is not known).  Therefore, in order to properly analyze the system response, develop 
templates for range estimation and deviation analysis, and calibrate the laser returns to provide absolute reflectance 
estimates, we are required to perform measurements to known reflectance standards in known geometric 
configurations (Wagner et al., 2008b).  For this purpose, three 12” by 12” Spectralon calibrated reflectance targets 
were purchased from Labsphere.  The three targets have a nominal reflectance of 99%, 50%, and 20%, respectively, 
in the visible spectrum, and are shown in Figure 2.  However, the actual reflectance of each of these targets is 
computed into the mid-infrared by the manufacturer (Labsphere, 2013), and from these reflectance profiles we can 
determine their actual reflectance at 1550 nm (the wavelength of the VZ-400) as 99%, 62%, and 30%.  

 
Data Collection 

In order to capture the entire dynamic range of the VZ-400 and to provide sufficiently dense sampling to 
reliably determine the system response templates and absolute reflectance response, a comprehensive set of 
measurements to the known reflectance standards was collected over multiple days on the campus of the University 
of Houston.  The distance between the scanner and the reflective targets was varied from 2 m to 260 m in the 
following increments: 2-32 m in 2 m increments, 35-70 m in 5 m increments, 80-140 m in 10 m increments, and 
160-260 m in 20 m increments.  At each distance, several thousand waveform samples were collected from each 

Table 1.  VZ-400 Specifications 

Parameter Long Range 
Mode 

High Speed 
Mode 

Effective Pulse Rate (Hz) 42,000 122,000 
Max. Range (reflectivity = 90%) 600 350 
Max. Range (reflectivity = 20%) 280 160 

Range Accuracy (mm) 5 
Range Precision (mm) 3 

Beam Divergence (mrad) 0.3 
Angular Resolution (º) 0.0005 
Laser Wavelength (nm) 1550 

 

Figure 1. Typical waveform response for the VZ-
400. 

Figure 2. Labsphere Spectralon Reflectance 
Targets. 
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target with an approximate 0º incidence angle.  As shown in Figure 2, the 99% reflectance standard was mounted on 
a pan and tilt tripod which allowed it to be rotated at each distance to also collect waveforms with 20°, 40°, and 60° 
angles of incidence.   

The instrument was operated in high speed mode (see Table 1) for all measurements.  The VZ-400 uses a high 
and low power channel to accommodate the large dynamic range of return energy (Riegl, 2012); only low channel 
waveforms are considered here, as the high channel was rarely used when imaging the reflectance standards.  To 
simplify illustration and analysis, only those observations beyond approximately 10 m are presented, thereby 
avoiding most near-field attenuation effects (Pfennigbauer & Ullrich, 2010).  Studies of discrete LiDAR intensities 
with respect to distance and incidence angle at shorter ranges can be found in (Kukko, Kaasalainen, & Litkey, 2008; 
Kaasalainen et al., 2009; Kaasalainen et al., 2011).  It is noted that the addition of the short range observations to the 
waveform and reflectance models described in this paper is easily accomplished. 

 
 

ANALYIS AND DISCUSSION 
 
Full Waveform Modeling 

In order to calculate template waveforms that can be used to determine expected system response (at normal 
incidence) to pulses of varying amplitude, the dataset described above was analyzed.  The several thousand return 
waveforms collected at each distance were aligned using the temporal peak location obtained from a simple cubic 
spline fit to each waveform.  Note that the spline is being used to align the waveforms to create a more dense 
representation of the system response for a given return pulse amplitude, not as a functional model for extracting 
target properties, such as in (Roncat, Bergauer, & Pfeifer, 2011).  For example, the pulses for the 99% reflectance 
standard collected at 32 m with normal incidence are shown in Figure 3.  Prior to selecting the cubic spline, several 
other functional models, including Gaussian variants, were fit to the waveforms but found to produce inconsistent 
alignment results.  This is a further indication that Gaussian pulse-fitting is not appropriate for the VZ-400.   

Each set of aligned waveforms was used to create an average waveform, and the average waveforms generated 
from each target combined to create a template of the expected return waveform shape over the dynamic range of 
the VZ-400.  The template model for 99% reflective Spectralon at 0° incidence is given in Figure 4.  An 
examination of Figure 4 shows that the return waveform at high amplitudes is significantly different from those at 
lower amplitudes, and has a much slower extinction.  However, the change of the waveform shape over the entire 
dynamic range is quite smooth.  The development of this template provides a simple reference for the predicted 
system response for a given return amplitude.  This will allow for a more accurate estimation of the target location 
and possibly enable the extraction of additional target properties from deviations in the actual measured return 
waveform from the expected system response. 

 

Figure 3. Several thousand return pulse 
waveforms from 99% 

Figure 4. 3D plot of return waveforms over 
dynamic range of VZ-400 from 99% Spectralon, 0° 

incidence. 
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Incidence Angle 
As previously mentioned, during the data collection at each distance, the angle of incidence for the 99% 

reflective Spectralon target was varied from 0° to 60° in 20° increments to determine the influence of incidence 
angle on the backscattered pulse.  The variation in the return waveform with varying incidence angle at two 
distances is given in Figure 5 and a plot of peak waveform amplitude with respect to range for the 40° and 60° 
incidence angles is given in Figure 6. As demonstrated by Equation (1), we would expect the amplitude of the return 
pulse to be decreased in proportion to the cosine of the angle of incidence.  This relationship appears to hold at 
longer target distances (approximately 160 m and above, as evidenced by Figure 5 and Figure 6), but does not hold 
true for shorter target distances.  This may partially be because the Spectralon targets do not behave as perfectly 
diffuse Lambertian surfaces in the backscattering direction (Papetti et al., 2007), but it is unclear how their 
diffusivity is influenced by distance.  (Riegl, 2012) indicates that non-linearity exists in the signal detection process 
of the Riegl instrument for stronger returned echo signals, which may be a contributing factor at shorter ranges. 

It is also interesting to note that the increased incidence angle does not alter the width of the return pulse 
significantly (Figure 7).  This is due to the fact that the beam from the VZ-400 has a relatively small divergence, and 
therefore the extent of the incident laser light on the target, even at larger angles of incidence, is not significant 
enough to spread the return energy profile at the sensor within the 500 MHz sampling rate of the VZ-400 waveform 
digitizer’s resolution.  In addition, (Lin &  Mills, 2010) reports that surface roughness is the dominant influence in 
expanded pulse widths for small-footprint airborne LiDAR, which may also be the case for terrestrial LiDAR 
sensors. 

 
 
 
 
 

 

  

Figure 5. Variation in return waveform shape due to changing incidence angle from 99% reflective Spectralon 
target at 32 m (a) and 160 m (b). 

Figure 6. Measured and computed amplitude 
versus range curves for 99% Spectralon at 40° and 

60° incidence angles (20° incidence omitted for 
clarity). 

Figure 7. Equal peak amplitude waveforms 
from 99% Spectralon observed at 0°, 20°, 40°, 

and 60° incidence angles. 
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Absolute Reflectance Modeling 
The Riegl VZ-400 laser scanner is unique in the LiDAR industry in that instead of providing an un-calibrated 

peak amplitude as the return intensity measurement, it returns a more physically meaningful pair of values which are 
referred to as “calibrated amplitude” and “relative reflectance” (Pfennigbauer & Ullrich, 2010).  The calibrated 
amplitude measurement is given in dB over the detection threshold of the instrument for its entire dynamic range.  
However, because this amplitude value, as shown in Equation (1), is highly dependent on the range to the target, 
Riegl goes one step further to compute a “relative reflectance”, which is the ratio of the calibrated amplitude of the 
target to the calibrated amplitude of a white reflectance standard at the same target range.  This use of relative 
reflectance allows a more seamless combination of scan data from different ranges and different fields of view.  
However, although it provides a more normalized view of intensity, it does not directly give an absolute reflectance 
value.  Therefore, to get a sense of absolute reflectance, the amplitude of the returns from 99%, 50%, and 20% 
Spectralon samples (99%, 62%, and 30% reflectance at 1550 nm) versus range to target was analyzed.  These results 
are shown in Figure 8. 

The graph in Figure 8(a) shows in dark lines the amplitude of the response versus distance for 99%, 62% and 
30% (at 1550 nm) Spectralon.  The gray lines on this graph represent amplitudes of 62% and 30% of the observed 
amplitude from the 99% Spectralon (the base digitizer noise level was accommodated in the calculations); i.e., these 
curves represent the expected reflectance of the 62% and 30% panels, if the instrument was providing peak 
waveform amplitudes proportional to proper absolute reflectance.  An examination of the curves shows that the 
reflectance of the 62% and 30% panels is higher than expected for all ranges up to approximately 200 m.  The 
convergence to expected values at longer ranges is similar to that shown in Figure 6 with respect to incidence angle, 
perhaps in part for similar reasons as mentioned previously.  The graph in Figure 8(b) is the sample amplitude 
versus distance plotted on a log-log scale.  The amplitude drop-off in this graph is approximately straight line up to 
about 100 meters, which shows that for the instrument the 1/R2-law is applicable, as is shown in (Pfennigbauer & 
Ullrich, 2010).  However, beyond 100 meters the linear log-log relationship no longer holds.  It is speculated that 
beyond 100 meters we begin to observe an additional decrease in amplitude due to atmospheric extinction. 

Given the results in Figure 8 we have been able to develop an empirical absolute reflectance model for the 
scanner that will allow us to transform a full waveform peak amplitude measurement to an estimate of absolute 
reflectance by using an interpolation between the calibrated 99%, 62%, and 30% reflectance values at each distance.  
Future work will include the addition of observations to a 2% reflectance target and validation of the reflectance 
model to determine whether or not it can be used to accurately determine absolute reflectance of targeted objects. 

Figure 8. Amplitude versus range for Spectralon targets. Measured and computed reflectance curves are compared 
in (a).  The straight line portions of the reflectance curves on the log-log plot in (b) shows the power relationship 

between amplitude and range. 
 

 
CONCLUSION 

 
Although widely used, the Gaussian function is not an appropriate model for the VZ-400 system response due to 

the elevated waveform tail and changing waveform shape across the sensor’s dynamic range.  Therefore, a series of 
measurements to targets of known reflectance and geometry were used to develop a system response template for 
waveform peak modeling.  The measurements were also used to develop calibration curves for transforming 
waveform peak amplitudes to absolute reflectance values 
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Future work will include validating the reflectance calibration curves with observations to additional reflectance 
standards, and examining deviations of observed waveforms from fitted template waveform models for potential 
correlation to target properties. 
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