

Airborne mapping LIDAR data collection and processing for archaeological research

Juan Carlos Fernandez-Diaz (jfernan4@central.uh.edu) Michael Sartori, Abhinav Singhania, William Carter and Ramesh Shrestha

SAA 79th Annual Meeting- April 27th , 2014, Austin, TX

Behind the scenes on going...

from an impervious canopy

to measuring the canopy and ground in 3D

Behind the scenes on going...

from an impervious canopy

to measuring the canopy and ground in 3D

to developing the DEM

Behind the scenes on going...

from an impervious canopy

to measuring the canopy and ground in 3D

to developing the DEM

or whatever product that enables your research

Points to take home

- Not all LiDAR products are created equal
 - 10 shots/m² \neq 10 shots/m² (under canopy)
 - No one-size-fits-all
- LiDAR processing is both an art and a science
 - Not necessarily a linear process
 - Many more options than "standard processing"...and no "ONE BEST WAY"
 - If not happy go back and talk to provider
- Have to go further from DEMs/DSMs
- Not a magic bullet, it has its limitations!

It all starts with...

- Archaeologist: "I want LiDAR for my study area!"
- Provider: "How much money you have?"
- The PI's requirements for the project:
 - Area to be covered
 - Desired collection window
 - Special considerations
 - Desired point density (~resolution)*
 - Shot, Return, GROUND POINT Densities

Mission Planning 2

Logistics:

- Suitable, secure airport & support facilities
- Locating GPS base stations
 - 100 km max baselines
- Hotels, roads, phone, internet

Permits:

- US DOS Export License for IMU
- Foreign government permits (equivalent to the US FAA – Department of Interior)
- Temporary import of equipment into country

PI Requirements - Caracol

What is Collected

- hand -
- Up in the air:
- IMU and GPS data
- Discrete range data
- Waveform data
- Weather
- On the ground:
- Lever arms
- GPS base station data
- Ground truth data

The goodies to be delivered

- Standard Deliverables:
 - Raw unclassified point cloud strips
 - Classified LAS tiles
 - ARCGIS 1 km x 1km tile grids
 - Bare Earth DEMs & First Surface DSMs
 - Bare Earth & First Surface Hillshades
 - Surfer Grids 1 km x 1km tile grids
 - Bare Earth & First Surface
 - ARCGIS or Surfer Mosaics
 - Project report

GPS Trajectory

- GPS reference stations:
 - Coordinates through NGS OPUS tied to the international CORS network.
- Airplane GPS:
- Differential trajectories derived using KARS software (Kinematic and Rapid Static) or POS GPS to each reference station.
- the solutions are differenced and compared for consistency
- individual solutions are combined sing an unweighted averaging algorithm

IMU data:

 GPS and IMU data is blended into an INS through a Kalman filter yielding a Smoothed Best Estimate Trajectory (SBET)

The objective is to account for sensors systematic errors so that observations for

Calibration

- overlapping strips match:
- Errors in laser distance measurement
- Scanning mirror errors
- Errors in position (GPS)
- Errors in orientation (INS)

Bad Calibration Good Calibration

Raw point cloud generation

- The SBET, Range File (or waveform NDF) and the Calibration files are processed through DASHMAP
- The output are the raw point cloud files, usually:
 - ASPRS LAS format (Classified by Echo)
 - 1 File per strip
 - Due to planned overlap data from a given area will be contained in several strips.
 - Strips are too big for further processing

Classification (Filtering)

- AKA Filtering, but this is not correct, because is not about eliminating data
- ASPRS LAS Classes:
 - 1 Unclassified
 - 2 Ground
 - 3-5 Vegetation
 - 6 Building
 - Terrascan has several routines:
 - Low points
 - Isolated points
 - By echo, echo difference
 - By absolute elevation
 - Ground

Ground Classification

- Iterative process which builds a triangulated model and molds it upwards as long as it finds new points matching iteration parameters
 - Location becomes ground if the application finds a smooth route to the top
 - Location becomes ground if you can drive a bicycle onto it from a previously established ground point

Moving Beyond the DEMs

3D Printing

Limitations

- Mapping LiDAR is a spatial sampling technology not full illumination
 - Random illumination of target
 - Resolution of an Image ≠ Resolution of DEM (Cell Size)
- There is uncertainty (accuracy/precision) in the measurements
 - GPS, attitude, ranging, footprint size
 - Mixed return signal
 - 20-50 cm horizontal, 5-15 cm vertical
 - Not X-ray vision, line-of-sight, see thru gaps
 - Return classification is probabilistic in nature False positives, false negatives
 - Hard to identify the point of diminishing returns